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Abstract-‘I’he integral form of the momentum equation is solved by use of a combined law of the wall 
and wake for the velocity profile appropriate to a transpired turbulent boundary layer. This gives a 
nonlinear ordinary differential equation which is solved numerically to predict the skin friction coefficient, 
C, variation with distance, as well as integral thicknesses, for both constant blowing fraction, F, and for F 
variable with x along the surface. Predicted skin friction coefficients are compared to experimental data 
for both blowing and suction in both zero and nonzero pressure gradients. Predictions compare well with 

the experimental values. 

INTRODUCTION 

Prediction of the hydrodynamics characteristics of a 
turbulent boundary layer flow, with the combined 
influences of blowing or suction and pressure gradient, 
is a problem of interest and importance to the aero- 
dynamics engineer. This yields the skin friction 
coefficient variation along the surface needed for cal- 
culating viscous drag on the body. In addition, the 
solution to the hydrodynamic field is a necessary pre- 
cursor to the solution of the associated convective 
heat transfer problem. 

Cousteix, in an article contained in Vol. II of the 
proceedings of the second Stanford Conference, Kline 
et al. [l], cites simplicity, speed and accuracy of inte- 
gral methods as reasons for them being an important 
part of the spectrum of tools, along with finite differ- 
ence methods, for solution of boundary layer prob- 
lems. Das and White [2] and Das [3] employed integral 
methods using the combined law of wall and wake to 
solve for the skin friction distribution in non- 
transpired boundary layers. Torii et al. [4] developed 
a model based on assumptions asserting that certain 
functions were the: same in nontranspired and tran- 
spired turbulent boundary layers, along with an 
approximation to relate the momentum thickness 
Reynolds number to the length Reynolds number, to 
solve for skin friction. Thomas and Kadry [S] express 
the shear stress variation across the boundary layer 
as an approximating sequence of polynomials. Then, 

using mixing length expressions, numerical inte- 
gration gives a numerical velocity profile. This numeri- 
cal velocity profile serves as input to the integral x 
momentum equation which is then solved by finite 
differences for the skin friction distribution. Pre- 
dictions are given for a range of constant values of 
blowing fraction for a zero pressure gradient and an 
adverse pressure gradient. There is some relatively 
complicated numerical work involved in using their 
integral method. Kline et al. [l], gives descriptions of, 
and results for, many finite difference approaches to 
the solution of the governing partial differential equa- 
tions of the turbulent transpired boundary layer. 
Included among these are low Reynolds number k-z 
models and other two equation models of turbulence. 

In the present work, the velocity profile needed in 
the integral x momentum equation for turbulent tran- 
spired flow was constructed by combining ihe inner 
law form suggested by Stevenson [6] with an outer, or 
wake law form developed by Silva-Freire [7] using 
asymptotic analysis. The result is a combined law of 
wall and wake whose overall form is simpler than the 
well known form of the combined law due to Coles 
[8]. The integrations needed in the x momentum equa- 
tion are all performed analytically and this leads to a 
nonlinear ordinary differential equation which is 
solved by a standard Runge-Kutta procedure. This 
solution yields the distribution of various integral 
thicknesses and the local skin friction coefficient. 
Unlike previous work, the present procedure is also 
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. 

NOMENCLATURE 

a, b constants in expression for free stream Y space coordinate perpendicular to the 
velocity or blowing fraction surface 

B defined by equation (13) Y+ yu*/v. 
B,,, B,, BZ, B,, Bb defined by equations in 

the Appendix Greek symbols 
C defined by equations (2), (16) and B defined in equation (21) ; Clauser’s 

(17) equilibrium parameter 
Cr 2LlPU,2 I- defined in equation (7) 
F v,/u, blowing fraction 6 local hydrodynamic boundary layer 
k turbulent kinetic energy thickness 
K 0.41 von Karman’s constant 6+ 6 u*jv 
L reference lengths 6* local displacement thickness 
P static pressure A defined in equation (8) 
Re,, Ree u,x/v, u,O/v Reynolds numbers & turbulent dissipation 

local x component and freestream 
velocity 
J(7Jp) friction velocity 

u/u*, u,/u* 
local y component of velocity at the 
surface 
%lu* 
space coordinate along the surface 

e local momentum thickness 
V kinematic viscosity 
z Coles wake strength 
f transpiration wake parameter of Silva- 

Freire 
P mass density 
fs defined by equation (4) 
7, local wall shear stress. 

applied to situations where F is variable and also 
where the simultaneous effects of variable F and vari- 
able pressure with x are present. 

ANALYSIS 

Consider steady on the average, two dimensional 
planar, constant property, turbulent boundary layer 
flow over a porous surface through which the same 
fluid is blown into, or extracted from the boundary 
layer. With the use of inner variables, u+ = u/u*, 
y+ = yu*/v where u* = J(z,/p), and defining the 
blowing fraction, F, as F = v,/u,, the integral form of 
the x momentum equation can be written : 

d S+ 

s 

d 
u+ dy+ - z 

u, du, 
usz 0 

u*uf2 dy+ + P -d-$’ 

To solve this equation, a velocity profile is needed, 
u(x, y’), and will be taken as the combined inner and 
outer law, the combined law of the wall and wake, for 
a turbulent transpired boundary layer. This is also the 
procedure employed by Das and White [2] for the 
nontranspired boundary layer. Coles [S] form is avail- 
able for use. However, a simpler form can be 
developed from a simpler outer law derived by Silva- 
Freire [7] using asymptotic expansions. If one takes the 
outer law deduced by Silva-Freire [7], equation (34) of 
his paper, and requires it to overlap the bilogarithmic 
inner law given in Stevenson [6], the result is the com- 

bined law of wall and wake given next (A procedure 
for doing this is outlined in Stevenson [9].) : 

u+ =~lny++C+~[~lnY++C] 

+[~]I$) (2) 

W(Y/S) is Coles wake function and is approximated 
well by a commonly used polynomial form due to 
Moses (White [lo]), namely 

II’($) = 2[3($-2($]. (3) 

In equation (2), if there is no transpiration, v,’ = 0 
and it reduces to the standard combined law of wall 
and wake. C is the additive constant in the inner law 
for nontranspired boundary layers, but is a function 
of x, C(x), in a transpired flow where it may depend 
upon v,’ or F. n: = n(x) is the wake parameter, or 
wake strength, of Coles, while e(x) is a second wake 
strength parameter, resulting from Silva-Freire’s [7] 
analysis, and depends upon a transpiration parameter 
such as vf or F. More will be said later about the 
calculation of both X(X) and 5(x). 

Define a variable 6, which allows a more compact 
representation of the velocity profiles, as follows. 

d = $n y+ + C(x). (4) 
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Using u, Coles [8] form of the velocity profile for 
transpired turbulent boundary layers is given by, 

(5) 

The velocity profile, equation (2), developed using the 
Silva-Freire [7] outer law can be written as follows. 

+ 
u+ l- =:a+Fu2+KW 5 0 

1- = n+v,+?t (7) 

The increased complexity of the Coles form, equation 
(5), is apparent from the cross product and the square 
terms involving the wake function, OW and w. In 
addition, in figures 6 and 7 of Silva-Freire [7], the 
outer law velocity profile implied by equation (6) is 
compared to the outer law implied by Coles [S] form, 
equation (5), for a range of blowing and suction par- 
ameters, F. Agreernent with the experimental velocity 
profile data is seen to be about the same for both 
forms. Thus, in order to make the integrations 
required in equation (1) more simply, it was decided 
to use equation (6) rather than (5) at this time. 

When making the integrations needed in equation 
(1), it was noticed that they could be done more simply 
and faster if the integration variable was changed to 
cr defined in equation (4). Call the value of rr, at the 
edge of the boundary layer, y+ = 6+, A, where 

A=$n6++C(x). (8) 

Thus one of the needed integrals becomes 

6+ 

s 

A 
u+ dy+ =KemKC 

s 
U+ eKO da (9) 

II -cc 

u+(o) is given by equation (6) and W(o), from equa- 
tion (3) is written as, 

w(~) = 2 e2k(o-*) [3 _ 2 ek’o-*‘]. (10) 

Doing this allows both integrations in equation (1) to 
be performed analytically with the results as follows : 

s+ s u+ dy+ = (11) 0 6+ 
s 0 

(12) 

B= B0+B,v,++B2v,+2. (13) 

The expressions for BO, B,, etc. are given in the Ap- 
pendix as a functiosn of A. 

Inserting equations (11) and (12) into equation (1) 
gives the result whl.ch follows next. 

(14) 

The coefficients, E,, E2, etc. in equation (14) are 
algebraic functions of 6+, F, K, f and Cr. The blowing 
fraction, F, is a known prescribed function of x in any 
given problem. Hence, additional relations are needed 
for C, C, x and R before solution of the equation for 
6+ = 6+(x) can be accomplished. 

Cris related to 6+ and other variables by evaluating 
the velocity profile, equation (2), at y+ = 6+ where 
u+ = Uf giving, after introducing the blowing frac- 
tion F ~‘v,Ju,, the following : 

(15) 

Expression for C 
Various suggestions have been advanced for the 

form of the function C appearing in equation (2). 
Stevenson [6] discusses many of these proposed forms. 
Coles [8] endorses the form recommended by Simpson 
[1 1] who chooses C such that equation (2) gives 
U+ = 11 at y+ = 11 which makes C a specified func- 
tion of v,’ . The latest proposal for C is given by Silva- 
Freire [7] and is based upon blowing data used at 
the second Stanford Conference, Kline et al. [l]. The 
relation which he developed is shown next. 

C = 5-5121; (F> 0). (16) 

Though based solely on blowing data, he suggests 
the validity of this result for suction (F < 0) also. 

An earlier relation specifically for suction is given 
by Bradshaw [12] as being, 

C=5+1375v,+* (F<O). (17) 

Equations (16) and (17) are used in the current 
work. One case of suction also was solved using equa- 
tion (16) instead of (17) and it was found that pre- 
dicted skin friction coefficients, C, differed by only 
0.4%. 

Wake parameter relations 
Relations are needed for the wake strength 

parameter, rr, of Coles [8] and the Z of Silva-Freire 
[71. 

By use of the experimental data of Andersen et al. 
[13], Silva-Freire [7] deduced the following form for 
his 8. 

8= -1.95ln(F]-3.1 

thus, 

dri 1.95 dF 
dx F dx’ 

A correlation of experimental data 

(18) 

(19) 

by White [14] 
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led to an expression for rt in terms of the Clauser 
pressure gradient parameter /?. More recently, the 
inclusion of far greater numbers of experimental data 
points led to improved relations for rc shown and 
discussed in Das and White [2] and Das [3]. These 
culminated in the recommendation of the following 
relation for n given in White [lo] : 

j = -0.4+0.76n+0.42n2 (20) 

p=:g. 
w 

(21) 

The present authors saw two problems with equa- 
tion (20). First, it gives rc = 0.426 when fi = 0, yet 
most flat plate data gives values considerably higher 
than this. The data of Wieghardt and others, shown 
in Coles [8], indicate a n value in excess of 0.50 for 
p = 0. The fl vs L relation for favorable pressure gradi- 
ents in Das and White [2] gives rt = 0.55 at /l = 0. 
Secondly, equation (20) indicates vanishing of the 
wake, rc = 0, at p = -0.4. There is theoretical 
evidence, Mellor and Gibson [ 151, that for equilibrium 
flows (where fl is sensibly constant) the wake van- 
ishes at /l = -0.5. On the basis of these arguments, 
the present authors replaced -0.4 by the -0.5 in 
equation (20). This causes the wake to vanish at 
/I = -0.50 and gives a value of rt = 0.5127 at fl = 0, 
a value more nearly in accord with experiment for this 
case. With this change, the b-n relation used in the 
present work is shown next 

p = -0.5+0.76xf0.42rc2. (22) 

Theoretically, a relation such as equation (22), 
which gives rt in terms of p alone, would hold only 
for equilibrium flows where the Clauser parameter p 
(equation (21)) is constant. In fact, Das and White [2] 
show that it tends to correlate nonequilibrium flow 
data also. Certainly their use of n-fl relations to cal- 
culate skin friction variation in nonequilibrium flows, 
Das and White [2], Das [3], yield predictions in good 
accord with the data. The data that led to equation 
(22) were for nontranspired flows, but Coles [8] finds 
that 7c is insensitive to transpiration to or from the 
boundary layer. 

With the introduction of equations (16) and (17) 
for C, (18) for R and (21) and (22) for rc, closure of 
the problem is achieved with equations (14) and (15). 
Combining all of these relationships yields the fol- 
lowing nonlinear differential equation for 6+. 

(23) 

F, the blowing fraction, is a given, prescribed function 
of x. u,(x) is available from the potential flow solution 
or from measurement and allows calculation of the 
needed derivatives of u,. Equation (19) gives de/dx. 

G,, G,, etc. are highly complicated known algebraic 
functions of 6+, u:, W, etc. 

Next, equation (23) is solved for 6+(x) by use of a 
fourth order Runge-Kutta finite difference procedure. 
The lattice spacing, Ax, was refined until the solution 
was effectively independent of the spacing. For exam- 
ple, in a case where F - -O.O04x~‘-” and u, N x-‘.‘~, 
a final spacing of Ax = 0.0145 m was used. Halving 
this value produced a maximum change of less than 
0.07% in the value of the predicted Cr/2. To begin 
the solution of equation (23), an initial condition is 
required. Usually what is available is the value of the 
skin friction coefficient, Cr, at x = x0, not the bound- 
ary layer thickness 6+. The starting value of 6+ was 
found by trying a succession of increasing values of 
6’ at x0 to evaluate the coefficients, G,,, G,, . . . and 
then solve the equation for C, at x0 + Ax where Ax is 
taken extremely small, say 10m6x0. When the solution 
at x,, + Ax yields the known value of Cr at x,,, the 
initial value of 6+ is determined. Alternately, one can 
take equations (S), (15)-( 18), (21) and (22) and solve 
these algebraic relations iteratively to find 6+ at x0. A 
similar procedure is used if one starts with a known 
value of momentum thickness Reynolds number. 

Once S+(x) has been solved, it is used in equation 
(15) to solve for C,(x). Integral thicknesses, such as 
momentum thickness 0 and displacement thickness 
6*, and their associated Reynolds numbers can then 
be solved for from their definitions. 

Validity limits of method 
The range of conditions for which the present 

method is expected to be valid depends on the con- 
ditions for which the velocity profile, equation (6), 
and the fi-rc relation, equation (22), are expected to 
hold. Coles [S], indicates that the velocity profile, 
equation (5), would certainly be applicable with the 
following limits on F, -0.004 < F < 0.010. It seems 
reasonable to expect this to be the case for equation 
(6) as well. The P-n relation being used, equation (22), 
seems to be sufficient for all pressure gradients except 
severe adverse gradients leading practically to separ- 
ation, see White [IO]. The present authors, also, have 
achieved good predictive success using equation (22), 
for F = 0.0, in all but very severe adverse pressure 
gradients. In fact, Das and White, [2], used two differ- 
ent fl-rc relations, one for severe adverse pressure 
gradient and one for separated flow, in their pre- 
dictions of flows which actually separated. It is also 
known, Mellor and Gibson [I 51, that in severely accel- 
erated flows the wake vanishes as fl+ -0.5. Yet, the 
wake parameter, 8, of Silva-Freire [7] is independent 
of 8. Thus, in such a flow, the present authors rec- 
ommend setting 7i = 0 in the velocity profile, equation 

(6). 

RESULTS AND DISCUSSION 

The variation of the skin friction coefficient with 
position x along the surface is usually the result of 
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0 DATA, KLINE, ET. AL. [l] 

- PREDICTIONS 

20- 
_J 

1 2 

X(m13 

4 5 

Fig. 1. Predictions compared to data. (A) F = 0.00, U, = con- 
stant. (B) F = t0.004, U, = constant. L = 2.286 m (7.5 feet). 

most interest to the flow and heat transfer analysts. 
Hence, the bulk of the predicted results are for C,/2 
along with some cases of momentum thickness Reyn- 
olds number, Re,,, and of displacement thickness 
Reynolds number, Ref, variation. Predicted values of 
Cc/2 will be compared to experimental data for both 
blowing, F > 0, and suction, F < 0, for cases where F 
is constant with x and cases where F varies with pos- 
ition x along the surface, for both constant free stream 
velocity, u,, and variable free stream velocity, par- 
ticularly decelerating flows. 

In the prediction of C,/2 by use of the present 
method, all calculations begin by matching the exper- 
imental value of C,/2 at the first data point, unless 
noted otherwise. ISimilarly, predictions of Reo and 
ReB begin by matching the experimental value of 
momentum and (displacement thickness Reynolds 
number at the first data point. 

Figure 1A shows predicted values of Cc/2 as the 
solid curve compared to experimental data, the circles. 
This is for the flat plate with zero transpiration, F = 0, 
and constant free stream velocity. The experimental 
data is from Wieghardt, case 0612 of the Second Stan- 
ford Conference, K-line et al. [ 11. As is seen, agreement 
of the present predictions with data is very good for 
this simple baseline test case used as a check on the 
method. 

Figure 1B shows results for strong blowing, 
F = +0.004, with constant free stream velocity u,. 
This was one of the transpiration tests, case 024, 
of the 2nd Stanford Conference. The data is from 
Andersen et aI. [13]. This figure shows predicted 
momentum thickness Reynolds number compared to 
experimental data. Agreement is considered very 
good. The maximum difference between predictions 

1.4- 

0.4 0.6 0.6 1.0 

X/L 
0 DATA F 

-0.002 ANDERSEN, ET. AL. [13] 

- PREDICTIONS 

---- INNERLAW 

o.40 0.2 0.4 0.6 0.6 1.0 

WL 
Fig. 2. Predicted skin friction compared to data. F = +0.004, 
u, = constant ; F = -0.002, -0.004, U, - x-‘~“. L = 2.286 m 

(7.5 feet). 

and data is about 6% at the last data point. Skin 
friction coefficient prediction for this case, 
F = + 0.004, is shown on the lower half of Fig. 2. The 
lower, solid, curve is the prediction employing the 
combined law of the wall and wake, equation (2), and 
exhibits excellent agreement with data. In fact, if one 
compares the present predictions for F = +0.004 to 
the numerical finite difference method solutions for 
this case presented in Vol. III of the 2nd Stanford 
Conference proceedings [ 11, the present predictions 
are better than three of the six methods and are com- 
parable to those of the remaining three methods. 
These six methods encompassed two equation models 
of turbulence, such as k-8 models, as well as Reynolds 
stress models. For comparison purposes, the dashed 
line in Fig. 2 for F = +0.004 is the prediction using 
the inner law alone, just the Law of the Wall, as the 
velocity profile. As can be seen, the Cc/2 values are 
much higher than the data because of the lack of a 
wake in the velocity profile in a situation, namely 
strong blowing, where it is expected that the wake 
effect will be accentuated, Julien et al. [ 161. 

The upper most curve in Fig. 2 is for strong suction, 
F = -0.004, combined with a deceleration, 
u,(x) - (ux+~)-~-‘~. This data is also from the 2nd 
Stanford Conference [ 11, case 0242. Again, the present 
method gives good agreement of predicted Cc/2 with 
the data with a maximum difference of about 5%. 
This is comparable to the agreement of the five finite 
difference methods which were applied to this case 
at the 2nd Stanford Conference (Vol. III [l]). The 
final curve in Fig. 2 is for moderate suction, F = 
-0.002, along with a decelerating free stream, 
u,(x) - (ux+~)-‘.‘~. The data is from Andersen et al. 
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Fig. 3. 

IATA, ANDERSEN, ET. AL. 1131 

- PREDICTIONS 

- - - - THOMAS AND KADRY [5] 

1.0 

0.8 

0.6 

0.4 

0.2 

O 0 0.2 0.4 0.6 0.8 1.0 

X/L 
Predicted skin friction compared to data. u, = con- 

stant. L = 2.286 m (7.5 feet). 

[13] and agreement of present predictions with data is 
good. 

The experimental data in Fig. 3 is from Andersen 
et al. [13]. The blowing fraction, F, is constant, rang- 
ing from 0.00 to 0.008, and free stream velocity, u,, is 
also constant. The solid lines represent the present 
predictions and agree well with the data except for the 
case of F = +0.008, very strong blowing. Although 
the data evaluators at the 2nd Stanford Conference 
[l] endorsed the integrity of most of the data in And- 
ersen et al. [13], they indicated that for F > f0.004, 
the boundary layers were not strictly two dimensional 
and the case of F = +0.008, in particular, failed their 
internal checks. Perhaps this is part of the reason for 
the quality of our predictions in this case. Also shown 
in Fig. 3, as dashed lines, are some of the predictions 
of Thomas and Kadry [5]. As is seen, their predictions, 
the dashed lines, begin somewhere after the third 
experimental data point, that is, after the region of 
the largest gradients in Cr/2. Also, it is not known 
what condition was being used at the start of the 
calculation. Reference [5] does not indicate how the 
calculations were started. As was mentioned earlier, 
the present calculations begin with the experimental 
value at the first data point as the initial condition. 

Data and predictions in Figs. 4 and 5 are presented 
for the most complicated cases, namely those in which 
both the free stream velocity, u,, and the blowing 
fraction, F, are functions of the distance x along the 
surface. Again, the experimental data are from And- 
ersen et al. [13]. The data in Fig. 4 are for 
U,(X) - [a+bx]-0.15 and F(x) - [a+bx]-‘.I’. In 
general, the agreement between predictions and data 
in Fig. 4 is satisfactory to good. For the case where 
F - 0.001~-~.“, the maximum difference in the C,/2 
predictions vs data is about 10% with an average 
difference of 7%. Predicted values of Cr/2 and Re, are 
compared to data in Fig. 5. There is good agreement 
for the case where F - +0.002~-~~” with u, - x-~.“. 
The agreement is not so good for the remaining 

Fig. 

e DATA, ANDERSEN, ET. AL [13] 

- PREDlCTlONS 

F 

-0.001 
J+zi 

+0.001 
x0.17 

+0.004 

O 0o.l p”7 

x/L’ . 
1.0 

4. Predicted skin friction compared to data. u, - X-O 15, 
L = 2.286 m (7.5 feet). 

case where F - -O.OO~X-~~‘~, but where 
u,(x) - [a+b~]-~.*~. The dependence of u, on the 
-0.20 power of x represents a fairly strong decel- 
eration. It may be that the @c relation being used, 
equation (22), has reached its limit of adequacy or 
that this is happening to the form being used as the 
wake contribution in equation (2). 

In Fig. 6, the data come from Simpson et al. [17]. 
All the data is for a constant value of u,, but for both 
constant Fand also for Fvarying as X-O 2o and X-O-~‘. 
As is evident, the agreement of present predictions 
with data is very good in all four cases. However, in 
the case where F - -0.0064~-~.~~, we were unable to 
match the measured value of Cr/2 at the first data 
point. The measured value seemed incompatible with 
the expressions being used for the velocity profile and 
for the z(x) relation. So, instead the calculation was 
started by using the lowest value of C,/2 permitted by 
our expressions. The value of F at the first data point, 

w 0 DATA, ANDERSEN, ET. AL. [13] 

? _ - PREDICTIONS 

’ I I 

0 0.2 0.4 0.6 0.8 1.0 

WL 
Fig. 5. Predictions compared to data. F - x-O.“, u, - x-“~‘~, 

F - x-O-16, u, - xv0 20. L = 2.286 m (7.5 feet). 
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*r 
7 - 
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5 - 

G 2 _ 

c44- 

Q 
- 3- 

2 - 

1 - 

a 
_,iIil2L_ ,,‘,, 
0 DATA, SIMPSON, ET. AL. [VI = 

9 

- Q 0 n +0.00427 

x0.5 

Ok-;-’ ; ’ i;‘lb’;o’ 

Rex x W5 

Fig. 6. Predicted skin friction compared to data. ur = con- 
stant. 

F = -0.00726, seems to force us to use a Cr/2 very 
close to this value, as in the case of the asymptotic 
suction limit. Possibly the measured value of C,/2 is 
in error at this point. Simpson et al. [17] noted that 
this case had a “la.minar like” velocity profile along 
with very small me,asured values of momentum thick- 
ness Reynolds number. Perhaps this is the source of 
our difficulties with the starting point for this one case. 

The final figure, Fig. 7, shows our predictions and 

0 PREDICTIONS DATA, ANDERSEN, ET. AL. 1131 

10 1 -----.- Resa ??
?? +0.00375 

-- Flee 0 
5 , “,” 

8, 
x 1’ 

20 /- 

K I “,’ 
/ +0.002 

z 
/m 

$6 

“,’ 
, 

/Q 
/ M’ 

E’ 
, 

04- I I , I I , I , I I 

0 0.2 0.4 0.6 0.6 1.0 

X/L 
Fig. 7. Predicted momentum and displacement thickness 
Reynolds numbers co:mpared to data. F = 0.00, u, N X-O ” ; 
F= 0.00375, 0.002 and 0.00, u, = constant; F= -0.004, 

u, N X-O. 5. L = 2.286 m (7.5 feet). 

experimental data from Andersen et al. [13] for 
momentum thickness Reynolds number, RQ, and for 
displacement thickness Reynolds number, Ref. The 
dashed lines give the predictions for Ret, while the 
solid lines represent the predicted Res. The two curves 
at the top of the figure, for F = 0.0, are for the case 
of a fairly strong deceleration, u,(x) - x-o-20, Agree- 
ment of these with the data appears to be good. The 
predictions and data in the bottom portion of the 
figure are for the case of u, being constant, except for 
the lowest curve, F = -0.004, which is for a decel- 
eration, u,(x) - x -‘.15. The predictions seem to agree 
well with the data. 

CONCLUSIONS 

By using inner coordinates, u+, ,v+, the integral 
form of the x momentum equation has been solved 
by utilizing the combined law of the wall and wake, 
in the form appropriate to a transpired turbulent 
boundary layer, as the needed velocity profile. The 
predictions of the method compare well to exper- 
imental data for the skin friction coefficient for both 
blowing and suction, constant and variable with x 
blowing fractions and for both zero and variable pres- 
sure gradients. The predictions of the method also 
compare very favorably with predictions from a num- 
ber of numerical finite difference methods which solve 
the partial differential equations governing the time 
averaged turbulent velocity field. 

Information has been provided to allow the con- 
struction of a relatively modest computer program to 
calculate the variables of interest. 

It is felt that the basic approach presented here has 
the potential to be extended to the convective heat 
transfer problem and this is being worked on at 
present. 
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APPENDIX 

Coefficients in equations (11) and (12) : 

I (‘43) 

5 
B, ==2A-6K 

&=A2_?!+?? 
6K 72K2 

(A5) 


